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Abstract: Brachiation, inspired by ape locomotion, involves swinging from one substrate to another. Existing approaches
typically rely on simple grippers and computationally expensive optimal control to compute feasible states and control
trajectories. In contrast, learning-based methods often lack physical modeling and require extensive training data. We
present a brachiating system using high degree-of-freedom anthropomorphic hands to generate swing trajectories and
perform stable grasps in a physics-based simulation environment (MuJoCo). An optimal open-loop trajectory is first
generated via trajectory optimization based on a desired grasp location. A tracking controller follows this reference, while a
grasping controller activates upon proximity to ensure secure contact. To reduce computational cost, we train a Generative
Adversarial Imitation Learning (GAIL) policy using expert trajectories from the optimization framework. The GAIL-based
controller generalizes to perturbed conditions and eliminates the need for repeated re-optimization, significantly lowering
computation time. It also adapts to varying initial configurations, removing the requirement to rerun optimization for each
case. We compare the learned model with a traditional optimal controller and demonstrate marked improvements in both
computational efficiency and versatility.
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1. INTRODUCTION

Brachiation, inspired by the arm-swinging locomo-
tion of primates, offers a promising approach for robotic
traversal in unstructured or elevated environments. Unlike
bipedal or wheeled locomotion, brachiating robots swing
between fixed supports, enabling motion in forests, power
lines, or space habitats where traditional mobility fails.

Over the years, brachiation control has evolved from
energy-based swing-up strategies like partial feedback
linearization [1], to hybrid controllers integrating target
dynamics and energy shaping [2], and more recently,
learning-based methods such as Tarzan [3], AcroMonk [4],
and imitation-driven models [5]. However, these systems
typically rely on underactuated arms and low-DOF grip-
pers, often treating grasping and swing control as separate
modules.

In contrast, we propose a high-DOF brachiation robot
composed of a two-link robot and two 16-DOF Anthro-
pomorphic Hands. Our framework combines offline tra-
jectory optimization for swing planning with a real-time
data-driven grasp controller, triggered by spatial prox-
imity. Once a secure grasp is made, the prior hand re-
leases—enabling continuous brachiation.

We evaluate two swing control strategies: a precise
PD controller tracking optimized joint trajectories, and a
GAIL[6]-based policy trained on expert demonstrations
with parameter perturbations. For grasping, a regression
model trained on successful grasp data enables robust 16-
DOF torque control, allowing interaction with cylindrical
substrates of varying sizes.

The proposed system is validated in MuJoCo simula-
tions across single and dual-swing scenarios.
Key contributions:

• Design and simulation of a 35-DOF brachiating robot
with high-DOF anthropomorphic grippers.
• Hybrid control framework integrating swing trajectory
optimization, imitation learning, and learned grasp con-
trol.
• Coordinated dual-arm sequencing for seamless grasp re-
lease transitions.
• Performance evaluation comparing PD and GAIL-based
swing controllers in simulation.

This work lays the groundwork for scalable, adaptive
brachiating robots capable of operating in both struc-
tured and dynamic environments. Future extensions in-
clude learning-based control, variable spacing, and full
3D brachiation.

2. RELATED WORK

Early brachiation control used heuristic and neural-
inspired methods. One early study applied CMAC to
generate control inputs without precise dynamic models
[7], establishing the foundation for model-free approaches.

The Acrobot swing-up problem became a canonical un-
deractuated control benchmark. Spong’s controllers used
partial feedback linearization and Lyapunov techniques to
regulate system energy [8], [1], influencing later methods
in dynamic locomotion.

Nakanishi et al. proposed hybrid controllers combining
target dynamics with energy shaping to improve robust-
ness against initial condition variability [2]. Their tar-
get dynamics method encoded brachiation as a harmonic
oscillator-based limit cycle, enabling hardware demonstra-
tions on swing, ladder, and rope locomotion [9],[10].

Gomes and Ruina [11] modeled a five-link 2D ape to



explore zero-energy-cost brachiation using passive dynam-
ics, offering biomechanical insights and energy-efficient
motion strategies.

Fukuda et al. introduced PDAC with Virtual Holo-
nomic Constraints for Gorilla Robot III, reducing energy
consumption by leveraging joint symmetry and passive
dynamics [12]. Nakanishi and Vijayakumar [13] used
Variable Stiffness Actuation (VSA) to jointly optimize
stiffness and timing, improving dynamic swing robust-
ness.

Tarzan [3] showcased wire-borne brachiation using
wrist rotation and locking grippers for efficient 2D move-
ment, suggesting potential for agricultural and inspection
tasks. Farzan et al. [14] used adaptive robust control to
compensate unknown cable dynamics in flexible settings.

Yang et al. [15] presented a three-link robot with iLQR-
based trajectory generation and cascaded PID + input-
output linearization tracking, improving swing stability
with lightweight design. AcroMonk [4], a minimalist un-
deractuated robot, demonstrated swing stabilization using
trajectory optimization, TVLQR, and RL under uncertain-
ties. A recent work by Fukaya et al. [16] introduced a
single-rod brachiation robot with a simplified structure,
achieving aerial brachiation over multiple bars. Reda et al.
[5] proposed an imitation-driven framework where a pol-
icy trained on a simplified model controls a 14-link robot,
enabling dynamic swings and emergent back-and-forth
behaviors.

While some systems like Tarzan [3] and those based
on target dynamics [10] employed active grippers, they
typically relied on low-DOF designs and treated grasping
as a separate task. In contrast, our work introduces a
unified control framework that synchronizes swing and
grasp actions using high-DOF anthropomorphic hands.
This combination of offline swing trajectory optimization
and a proximity-triggered, data-driven grasp controller
enables coordinated multi-swing brachiation in simulation,
addressing a gap in existing literature.

3. METHODOLOGY

In this work, we develop and simulate a brachiation
robot that combines an underactuated acrobot structure
with dual Anthropomorphic Hands acting as grippers at
both ends. The goal is to achieve rhythmic brachiation-
like locomotion by swinging from one fixed substrate to
the next, using coordinated dynamics and grasping control.
Figure 1 shows the initial and final configurations during
one complete brachiation cycle, from the start of swing to
substrate grasp.

Fig. 1. Initial and final configurations at the start and end
of a single brachiation cycle.

3.1 System Description and Mathematical Model
Our robot consists of a two-link underactuated ac-

robot with anthropomorphic Allegro Hands (16 DOF each)
mounted at both ends. Each link and attached hand has a
combined mass of approximately 1.1 kg. The anthropo-
morphic Hands are used for dynamic grasping of cylindri-
cal substrates placed in the environment. For trajectory
generation, we use a simplified model that ignores the
high-DOF hands and considers only the two-link acrobot,
which is sufficient for generating effective swing trajecto-
ries.

Fig. 2. An anthropomorphic hand (Allegro Hand) used
for grasping the substrate.(Source:Mujoco Menagerie
[17])

The simplified planar acrobot dynamics are governed
by the Euler–Lagrange equation:

M(q) q̈+C(q, q̇) q̇+G(q) = Bu, (1)

where q = [q1, q2]
T are the shoulder and elbow joint

angles, and u is the actuation torque applied at the elbow
joint. We define the full system state as:

x =

[
q
q̇

]
= [q1, q2, q̇1, q̇2]

T . (2)

Here, M(q) ∈ R2×2 is the inertia matrix, C(q, q̇) ∈
R2×1 is the Coriolis/centrifugal vector, and G(q) ∈
R2×1 is the gravity vector. B ∈ R2×1 is the actuation
matrix, and u ∈ R is the control input torque.

Simplified Model for Trajectory Generation: The
trajectory optimization problem described in Sec. 3.1 is
based on this simplified two-link model and excludes the
dynamics of the Allegro Hands. Once an optimal state-
control sequence {x∗(t), u∗(t)} is obtained, it is applied
to the full MuJoCo model, which includes both 16-DOF
Allegro Hands. Despite ignoring the added inertia from
the hands during optimization, the simplified model re-
mains effective in practice. The high-DOF hands slightly
perturb the system’s swing behavior, but our PD tracking
controller (Sec. 3.2 ) compensates for these deviations,
enabling robust swing-and-grasp execution in simulation.

Trajectory Optimization via Trapezoidal Colloca-
tion: We discretize the infinite-dimensional optimal con-
trol problem into an N -point nonlinear program by defin-



Fig. 3. Block diagram of GAIL-based brachiation control. The policy is trained using optimized trajectories. A proximity-
triggered MLP regressor generates grasp torques. Simulation provides feedback for GAIL.

ing:

tk =
k − 1

N − 1
T, xk ≈ x(tk), uk ≈ u(tk),

fk = f(xk, uk), ∆t =
T

N − 1
,

where f(xk, uk) represents the system dynamics at the
k-th discretization point.

The continuous cost function,

J =

∫ T

0

∥u(t)∥2 dt, (3)

is approximated using the trapezoidal rule:

J ≈
N∑

k=1

wk ∥uk∥2 ∆t, wk =

{
1
2 , k = 1 or k = N,

1, otherwise.
(4)

System dynamics are enforced via defect constraints
using trapezoidal integration:

xk+1 − xk − ∆t
2

(
fk + fk+1

)
= 0, k = 1, . . . , N − 1.

(5)
Including terminal constraints and bounded control in-

puts, the final nonlinear program becomes:

min
x1:N , u1:N

N∑
k=1

wk ∥uk∥2 ∆t

s.t. xk+1 − xk − ∆t
2

(
f(xk, uk) + f(xk+1, uk+1)

)
= 0,

x1 = x0, xN = xF (initial and terminal constraints),
umin ≤ uk ≤ umax, k = 1, . . . , N.

(6)

3.2 Control Architecture
Our three-stage controller (Fig. 3) combines the

strengths of offline optimization, high-level tracking con-
troller, and low-level grasp/release logic:
1. Offline Trajectory Optimization: Using trape-
zoidal direct collocation via optimTraj and MATLAB’s
fmincon, we solve an energy-minimizing Brachiation
motion problem (Eq. (3)), producing reference trajecto-
ries x∗(t), u∗(t). Since the optimization is performed on
a simplified two-link acrobot model without the anthro-
pomorphic hands, the resulting u∗(t) cannot be directly
applied to the full system.
2. High-Level Tracking Controller: We implement two
swing controllers: a PD controller and a GAIL-based
policy. The PD controller directly tracks a single offline-
optimized trajectory obtained from trajectory optimization.
For the PD controller, the joint torque command is com-
puted as

τ = Kp (qdes − q) +Kd (q̇des − q̇) , (7)

where q and q̇ are the measured joint angles and angular
velocities, and qdes, q̇des are obtained from the offline-
optimized trajectory at each time step. The PD gains were
tuned empirically to balance stability and responsiveness.
Torque commands are constrained within experimentally
chosen safety limits to prevent unrealistic actuator behav-
ior in simulation. The controller operates synchronously
with the MuJoCo simulation step, ensuring real-time track-
ing of the desired trajectory.
Alongside the PD controller, we introduce a Generative
Adversarial Imitation Learning (GAIL)–based policy that



learns to replicate expert behavior through adversarial
training. The GAIL policy is modeled as a two-layer mul-
tilayer perceptron (MLP) with 128 hidden units per layer
and ReLU activations, outputting Gaussian-distributed
torques based on a 5D input state [t, θ1, θ2, θ̇1, θ̇2]. A
discriminator network distinguishes expert actions from
agent-generated behavior. GAIL is trained on 70 expert
trajectories (generated under varied initial conditions and
dynamics) for 400 epochs using REINFORCE-style up-
dates with discriminator-derived rewards. Fig. 4 illustrates
the architecture used during GAIL training, where the
generator interacts with the MuJoCo simulator and the dis-
criminator distinguishes expert and generated trajectories.
The GAIL training process includes feedback from Mu-
JoCo simulation (state trajectories), forming an adversarial
loop between policy and discriminator.

Fig. 4. GAIL architecture: The discriminator is trained to
distinguish expert and generated data, while the gen-
erator (policy) interacts with the MuJoCo simulation.
Generated and expert data flow into the discriminator
to drive adversarial learning.

During execution, the GAIL policy outputs joint torque
commands directly at each simulation step, which are then
bounded within safe torque limits before being applied to
the actuators. Once trained, the GAIL policy generates
control actions in real time without requiring trajectory
re-optimization. It exhibits better generalization to per-
turbed initial states than PD control but consumes more
energy and has a lower grasp success rate. This trade-off
makes GAIL more suitable for dynamic and uncertain
environments requiring real-time adaptability.
3. Low-Level Grasp/Release: The low-level grasp con-
troller is activated based on proximity to the swing tar-
get. Let x(T ) be the desired end-effector position at
grasp time. During the swing, the Euclidean distance
∥xcurrent − x(T )∥ is monitored, and when this falls below
a threshold ϵ = 0.10m, the grasp sequence is initiated.
Upon activation, a trained regression model maps the 32-
dimensional joint state of the Anthropomorphic Hand (16
joint positions + 16 joint velocities) to 16 output torques,
enabling full-DOF grasping. The model is implemented
as a multilayer perceptron (MLP) regressor with two hid-
den layers of 64 neurons each and ReLU activations. It
is trained using the Adam optimizer on successful grasp

trajectories collected in simulation. If the proximity thresh-
old is not met (“No” case in Fig. 3), the system continues
executing the swing controller until the condition is satis-
fied. This integrated control architecture enables coordi-
nated swing and grasp actions, forming the basis for the
performance evaluation presented in the following section.

Sequential Execution: This sequence is repeated for
each swing, forming a closed loop of coordinated swing-
ing and grasping actions that result in robust multi-phase
brachiation behavior.

4. SIMULATION EXPERIMENTS AND
RESULTS

All simulations are conducted in the MuJoCo physics
engine, which provides accurate modeling of joint dy-
namics, contact forces, and actuation. The robot model
includes explicit link masses, joint constraints, and hand-
substrate interaction.

To evaluate our brachiation controller, we conducted
a series of MuJoCo simulation trials using the optimized
swing trajectory and real-time coordinated swing–grasp
controller described in Section 3.2. These experiments
validate robustness across single and dual-swing scenar-
ios.

To improve robustness, the expert dataset includes
±20% link mass variation, ±10° joint angle perturbation,
and ±3 cm link length offsets. The trained GAIL con-
troller performs reliably within this distribution. How-
ever, the overall grasp success rate—measured across both
in-distribution and out-of-distribution perturbations—is
approximately 58%, with performance degrading as devi-
ations increase.

4.1 Training Dynamics and Analysis
Figure 5 shows the training curve of the GAIL con-

troller. Over 400 epochs, the discriminator loss steadily
decreases while the generator (policy) stabilizes, indicat-
ing successful convergence. This behavior reflects that the
policy increasingly generates trajectories similar to expert
demonstrations, eventually reaching a near-equilibrium
between discriminator and generator. The adversarial
feedback loop, along with exposure to diverse initial con-
ditions, supports robust policy learning under model un-
certainty.

Fig. 5. Training process of the GAIL-based controller
using expert trajectories and simulated feedback.



4.2 Single-Swing Timing
In each trial, the robot begins in the initial posture(

q1, q2
)
= (−45◦,−90◦), swings to the next substrate

posture (+45◦,+90◦), and executes the grasp/release cy-
cle. We observed:
• Swing duration: The shoulder and elbow joints com-
plete the prescribed trajectory in ≈ 2.0 s for GAIL and
less than that for PD. The PD controller required 29.77s to
compute each optimal trajectory on an NVIDIA GeForce
RTX 3060 GPU, limiting its use in real-time scenarios
where rapid re-planning is needed (1–2s per swing). To
address this limitation, we adopt Generative Adversarial
Imitation Learning (GAIL) which is online and robust to
perturbations.
• Grasp hold: Upon contacting the next bar, the Anthro-
pomorphic Hand closes and holds for a second to secure
grasp.
• Release delay: After the hold, the opposite hand re-
leases immediately, enabling the next swing.

4.3 Multi-Swing Performance
We ran two consecutive swings in a single continuous

trial to test transition robustness. Over these 2 swings:
• Success rate: All the swings successfully reached and
grasped the next substrate without slipping in PD-based
swing control while success rate reduces when GAIL is
used for swing.
• Trajectory tracking: The robot successfully follows
the optimized swing trajectory across multiple phases, as
observed through consistent motion profiles and substrate
grasp success. This indicates reliable execution of the
planned path within the dynamic limits of the system.
• Cycle time: Each full brachiation cycle (swing + hold
+ release) completed within 3.0 s.

4.4 Discussion and Conclusion
The controller completed each swing in 2s, followed

by a 1s grasp phase. PD showed high success by accu-
rately tracking trajectories despite added gripper mass and
underactuation. Its 100% success rate across multiple
swings reflects reliable coordination between swing and
grasp subsystems.

In contrast, the GAIL-based swing controller improves
robustness and generalization. Notably, it enables the
system to recover from perturbed initial joint config-
urations, where PD often fails. This enhanced adapt-
ability comes at a cost—GAIL consumes more energy
and achieves a lower grasp success rate due to subopti-
mal early-phase motions and longer cycle durations. The
GAIL policy does not explicitly track a reference trajec-
tory, unlike PD, but learns swing dynamics directly from
data, contributing to its flexibility. Future work will fo-
cus on optimizing this trade-off between robustness and
efficiency.

Moreover, the combination of trajectory optimization
with learning-based control provides a promising hybrid
framework. The use of anthropomorphic hands also opens
avenues for studying fine-grained manipulation during
dynamic motion. We also plan to extend our framework

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 6. Sequential snapshots of brachiation motion at vari-

ous instants with final motion trail across two swings.

Table 1. Performance comparison between PD and GAIL
swing controllers. GAIL demonstrates superior recovery
from perturbed initial states at the cost of energy efficiency
and success rate.

Metric (per swing) PD GAIL
Control Mode Offline Online
Recovery from Perturbed Initial State Poor Better
Computation Time (per Trajectory) 30 s 0.00008 s
Grasp Success Rate 100% 58%
Energy Usage 19.5 J 100 J
Time per Swing Cycle 1.286 s 2 s

to 3D brachiation with lateral maneuvers and adaptive bar
spacing.

5. FUTURE WORK

The current approach uses offline-optimized trajecto-
ries and PD-based tracking, which ensures high accuracy
but may not generalize well to perturbations. In con-
trast, our preliminary results with a GAIL-based online
controller show improved adaptability but lower grasp ac-
curacy and significantly higher energy consumption. As
a next step, we aim to improve the accuracy and energy



efficiency of the online imitation-based controller, en-
abling robust and sustainable brachiation under dynamic
and uncertain conditions. This includes optimizing policy
structure, tuning reward shaping for energy minimization,
and incorporating curriculum learning for complex initial-
izations. Reducing energy consumption while maintaining
robust trajectory tracking under perturbations will be the
key focus of future improvements.

Second, our current system assumes that the spacing
between substrates lies within the robot’s reachable range.
To overcome this limitation, we plan ricochetal brachia-
tion, involving large-amplitude swings that leverage mo-
mentum to reach substrates beyond static reach. Future
work will also explore three or more consecutive swings to
strengthen grasp reliability in extended motion sequences,
especially under perturbation. Incorporating online feed-
back for grasp quality estimation and recovery will be
investigated to address second-swing failures.

Currently, the system supports planar (2D) brachia-
tion only. Future work includes 3D brachiation with
lateral transitions to navigate cluttered structures like
trees, pipelines, or industrial scaffolding. Additionally,
simulation-to-real transfer strategies will be explored us-
ing domain randomization, torque-limited policies, and
fine-tuning with hardware-in-the-loop experiments.

Together, these enhancements aim to take a significant
step toward deploying high-DOF brachiation robots in
real-world, unstructured environments where robust, adap-
tive, and energy-aware locomotion is critical.
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